Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/96371
Título : Data-driven approaches for generating probabilistic short-term renewable energy scenarios
Autor : Galici, Marco
Guarnizo Lemus, Cristian
Fecha de publicación : 1-dic-2024
Resumen : 
Renewable energy sources (RES) are becoming increasingly prevalent in power systems, but their intermittent and unpredictable nature challenges deterministic optimal generation scheduling. Stochastic planning or operating methodologies offer superior performance compared to deterministic approaches, making renewable energy generation scenarios increasingly valuable inputs for multistage decision-making problems. In this paper, we introduce and compare three data-driven approaches for generating probabilistic renewable energy scenarios. Numerical results from both simulated and real-world datasets demonstrate the accuracy and computational efficiency of these methods. Our proposed approaches provide a powerful tool for creating precise and efficient probabilistic renewable energy scenarios, which can enhance optimal generation scheduling in power systems with high RES penetration.
Descripción : Artículos en revistas
URI : https:doi.org10.1016j.compeleceng.2024.109817
http://hdl.handle.net/11531/96371
ISSN : 0045-7906
Aparece en las colecciones: Artículos

Ficheros en este ítem:
Fichero Tamaño Formato  
IIT-24-317R.pdf1,9 MBAdobe PDFVisualizar/Abrir     Request a copy


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.