Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/97236
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorDietz, Linus W.es-ES
dc.contributor.authorSánchez Pérez, Pabloes-ES
dc.contributor.authorBellogín, Alejandroes-ES
dc.date.accessioned2025-02-04T15:33:41Z-
dc.date.available2025-02-04T15:33:41Z-
dc.date.issued2025-01-03es_ES
dc.identifier.issn1943-4294es_ES
dc.identifier.urihttps://doi.org/10.1007/s40558-024-00304-0es_ES
dc.identifier.urihttp://hdl.handle.net/11531/97236-
dc.descriptionArtículos en revistases_ES
dc.description.abstract.es-ES
dc.description.abstractPoint-of-interest (POI) recommendations are essential for travelers and the e-tourism business. They assist in decision-making regarding what venues to visit and where to dine and stay. While it is known that traditional recommendation algorithms’ performance depends on data characteristics like sparsity, popularity bias, and preference distributions, the impact of these data characteristics has not been systematically studied in the POI recommendation domain. To fill this gap, we extend a previously proposed explanatory framework by introducing new explanatory variables specifically relevant to POI recommendation. At its core, the framework relies on having subsamples with different data characteristics to compute a regression model, which reveals the dependencies between data characteristics and performance metrics of recommendation models. To obtain these subsamples, we subdivide a POI recommendation data set on New York City and measure the effect of these characteristics on different classical POI recommendation algorithms in terms of accuracy, novelty, and item exposure. Our findings confirm the crucial role of key data features like density, popularity bias, and the distribution of check-ins in POI recommendation. Additionally, we identify the significance of novel factors, such as user mobility and the duration of user activity. In summary, our work presents a generic method to quantify the influence of data characteristics on recommendation performance. The results not only show why certain POI recommendation algorithms excel in specific recommendation problems derived from a LBSN check-in data set in New York City, but also offer practical insights into which data characteristics need to be addressed to achieve better recommendation performance.en-GB
dc.format.mimetypeapplication/pdfes_ES
dc.language.isoen-GBes_ES
dc.rightsCreative Commons Reconocimiento-NoComercial-SinObraDerivada Españaes_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/es_ES
dc.sourceRevista: Information Technology and Tourism, Periodo: 1, Volumen: Online first, Número: Online first, Página inicial: en línea, Página final: en lineaes_ES
dc.titleUnderstanding the infuence of data characteristics on the performance of point‑of‑interest recommendation algorithmses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.description.versioninfo:eu-repo/semantics/publishedVersiones_ES
dc.rights.holderes_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.keywords.es-ES
dc.keywordsPoint-of-interest recommendation · Ofine evaluation · Regression analysis · Data characteristicsen-GB
Aparece en las colecciones: Artículos

Ficheros en este ítem:
Fichero Tamaño Formato  
202513201718458_s40558-024-00304-0.pdf3,8 MBAdobe PDFVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.