Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/98451
Título : Improving Novelty and Diversity of Nearest-Neighbors Recommendation by Exploiting Dissimilarities
Autor : Sánchez Pérez, Pablo
Sanz Cruzado, Javier
Bellogín, Alejandro
Fecha de publicación : 3-abr-2025
Editorial : Springer (Cham, Suiza)
Resumen : .
Neighborhood-based approaches remain widely used techniques in collaborative filtering recommender systems due to their versatility, simplicity, and efficiency. Traditionally, these algorithms consider similarity functions to measure how close user or item interactions are. However, their focus on capturing similar tastes often overlooks divergent preferences that could enhance recommendations. In this paper, we explore alternative methods to incorporate such information to improve beyond-accuracy performance in this type of recommenders. We define three mechanisms based on various modeling assumptions to integrate differing preferences into traditional nearest neighbors algorithms. Our comparison on four well-known and different datasets shows that our proposed approach can enhance the novelty and diversity of the recommendations while maintaining ranking accuracy. Our implementation is available at https://github.com/pablosanchezp/kNNDissimilarities.
Descripción : Capítulos en libros
URI : https://doi.org/10.1007/978-3-031-88717-8_14
Aparece en las colecciones: Artículos



Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.