Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/99442
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorNájera Álvarez, Pabloes-ES
dc.contributor.authorKreitchmann, Rodrigo S.es-ES
dc.contributor.authorEscudero, Scarlettes-ES
dc.contributor.authorAbad, Francisco J.es-ES
dc.contributor.authorde la Torre, Jimmyes-ES
dc.contributor.authorSorrel Luján, Miguel Ángeles-ES
dc.date.accessioned2025-06-20T12:20:34Z-
dc.date.available2025-06-20T12:20:34Z-
dc.date.issued2025-04-23es_ES
dc.identifier.issn0007-1102es_ES
dc.identifier.urihttps://doi.org/10.1111/bmsp.12393es_ES
dc.identifier.urihttp://hdl.handle.net/11531/99442-
dc.descriptionArtículos en revistases_ES
dc.description.abstract.es-ES
dc.description.abstractDiagnostic classification modelling (DCM) is a family of restricted latent class models often used in educational settings to assess students' strengths and weaknesses. Recently, there has been growing interest in applying DCM to noncognitive traits in fields such as clinical and organizational psychology, as well as personality profiling. To address common response biases in these assessments, such as social desirability, Huang (2023, Educational and Psychological Measurement, 83, 146) adopted the forced-choice (FC) item format within the DCM framework, developing the FC-DCM. This model assumes that examinees with no clear preference for any statements in an FC block will choose completely at random. Additionally, the unique parametrization of the FC-DCM poses challenges for integration with established DCM frameworks in the literature. In the present study, we enhance the capabilities of DCM by introducing a general diagnostic framework for FC assessments. We present an adaptation of the GDINA model to accommodate FC responses. Simulation results show that the G-DINA model provides accurate classifications, item parameter estimates and attribute correlations, outperforming the FC-DCM in realistic scenarios where item discrimination varies. A real FC assessment example further illustrates the better model fit of the G-DINA. Practical recommendations for using the FC format in diagnostic assessments of noncognitive traits are provided.en-GB
dc.format.mimetypeapplication/pdfes_ES
dc.language.isoen-GBes_ES
dc.rightsCreative Commons Reconocimiento-NoComercial-SinObraDerivada Españaes_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/es_ES
dc.sourceRevista: British Journal of Mathematical and Statistical Psychology, Periodo: 1, Volumen: Online first, Número: , Página inicial: 1, Página final: 23es_ES
dc.titleA general diagnostic modelling framework for forced-choice assessmentses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.description.versioninfo:eu-repo/semantics/publishedVersiones_ES
dc.rights.holderes_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.keywords.es-ES
dc.keywordsdiagnostic classification, forced-choice assessments, latent class, noncognitive traitsen-GB
Aparece en las colecciones: Artículos

Ficheros en este ítem:
Fichero Tamaño Formato  
202561217229170_2025 - BJMSP - Najera et al.pdf1,08 MBAdobe PDFVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.