Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/99643
Título : Learning an inverse thermodynamic model for Pneumatic Artificial Muscles control
Autor : Wang, G.
Chalard, R.
Cifuentes Quintero, Jenny Alexandra
Pham, Minh Tu
Fecha de publicación : 1-oct-2025
Resumen : .
Pneumatic Artificial Muscles (PAMs) are highly nonlinear actuators widely used in robotics, rehabilitation, and other dynamic applications. Their complex behavior poses significant challenges for traditional system identification methods. Although machine learning techniques have shown remarkable success in modeling nonlinear systems, their black-box nature often leads to interpretability issues and susceptibility to overfitting. This study proposes a novel hybrid modeling approach that combines the strengths of analytical models with neural networks to capture the inverse thermodynamic behavior of PAMs. The results demonstrate that the hybrid model outperformed both analytical and purely neural network models. The obtained models were further used for model-based control design and the results show that the application of hybrid model improved the tracking performance.
Descripción : Artículos en revistas
URI : https://doi.org/10.1016/j.mechatronics.2025.103359
ISSN : 0957-4158
Aparece en las colecciones: Artículos

Ficheros en este ítem:
Fichero Tamaño Formato  
Paper_2025.pdf993,71 kBAdobe PDFVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.