Mostrar el registro sencillo del ítem
DiffSim2Real: Deploying Quadrupedal Locomotion Policies Purely Trained in Differentiable Simulation
dc.contributor.author | Tordesillas Torres, Jesús | es-ES |
dc.date.accessioned | 2025-07-24T08:51:54Z | |
dc.date.available | 2025-07-24T08:51:54Z | |
dc.identifier.uri | http://hdl.handle.net/11531/102183 | |
dc.description.abstract | es-ES | |
dc.description.abstract | Differentiable simulators provide analytic gradients, enabling more sample-efficient learning algorithms and paving the way for data intensive learning tasks such as learning from images. In this work, we demonstrate that locomotion policies trained with analytic gradients from a differentiable simulator can be successfully transferred to the real world.Typically, simulators that offer informative gradients lack the physical accuracy needed for sim-to-real transfer, and viceversa. A key factor in our success is a smooth contact model that combines informative gradients with physical accuracy, ensuring effective transfer of learned behaviors. To the best of our knowledge, this is the first time a real quadrupedal robot is able to locomote after training exclusively in a differentiable simulation. | en-GB |
dc.format.mimetype | application/octet-stream | es_ES |
dc.language.iso | en-GB | es_ES |
dc.title | DiffSim2Real: Deploying Quadrupedal Locomotion Policies Purely Trained in Differentiable Simulation | es_ES |
dc.type | info:eu-repo/semantics/workingPaper | es_ES |
dc.description.version | info:eu-repo/semantics/draft | es_ES |
dc.rights.holder | es_ES | |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es_ES |
dc.keywords | es-ES | |
dc.keywords | en-GB |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Documentos de Trabajo
WorkingPaper, ponencias invitadas y contribuciones en congresos no publicadas