Mostrar el registro sencillo del ítem

dc.contributor.authorCazorla García, Pedro-Josées-ES
dc.date.accessioned2025-11-12T15:03:51Z
dc.date.available2025-11-12T15:03:51Z
dc.identifier.urihttp://hdl.handle.net/11531/107144
dc.description.abstract.es-ES
dc.description.abstractGiven a prime number q and a squarefree integer C1, we develop a method to explicitly determine the tuples (y, n, α) for which the difference yn − qα has squarefree part equal to C1. Our techniques include the combination of the local information provided by Galois representations of Frey–Hellegouarch curves with the effective resolution of Thue–Mahler equations, as well as the use of improved lower bounds for q−adic and complex logarithms. As an application of this methodology, we will completely resolve the case when 1 ≤ C1 ≤ 20 and 2 ≤ q < 25.en-GB
dc.format.mimetypeapplication/pdfes_ES
dc.language.isoen-GBes_ES
dc.rightsCreative Commons Reconocimiento-NoComercial-SinObraDerivada Españaes_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/es_ES
dc.titleOn differences of perfect powers and prime powerses_ES
dc.typeinfo:eu-repo/semantics/workingPaperes_ES
dc.description.versioninfo:eu-repo/semantics/draftes_ES
dc.rights.holderes_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.keywords.es-ES
dc.keywordsPerfect powers, prime powers, Diophantine equations, Thue–Mahler equations, Frey–Hellegouarch curves, modular method, Galois representations, Baker theory, logarithmic forms, number theoryen-GB


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Creative Commons Reconocimiento-NoComercial-SinObraDerivada España
Excepto si se señala otra cosa, la licencia del ítem se describe como Creative Commons Reconocimiento-NoComercial-SinObraDerivada España