• English
    • español
  • English 
    • English
    • español
  • Login
View Item 
  •   Home
  • 2.- Investigación
  • Documentos de Trabajo
  • View Item
  •   Home
  • 2.- Investigación
  • Documentos de Trabajo
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Bayesian nonparametrics for interval data. An agenda for future research

Thumbnail
View/Open
IIT-16-103A_abstract.pdf (58.88Kb)
Author
Maté Jiménez, Carlos
Estado
info:eu-repo/semantics/draft
Metadata
Show full item record
Mostrar METS del ítem
Ver registro en CKH

Refworks Export

Abstract
 
 
Interval analysis (IA) and symbolic data analysis (SDA) are considered in essence nonparametric. Both fields are called to play a quite relevant role in the future of Big Data (BD) or Internet of Things (IoT). In many contexts, some of them belonging to the domain of BD andor IoT, we have some prior knowledge about the behaviour of the variables in study which can be managed using the Bayesian paradigm. As a result we are interested in how to take advantage of the information incorporated in the interval-valued dataset and our previous knowledge, both of which can be considered simultaneously in the Bayesian nonparametrics (BNP) framework. After more than 40 years of research, there is a general consensus about Nonparametric Bayesian that it is a paradigm any researcher needs to consider in order to provide alternative solutions for complex real problems. In the last 10 years several examples of these alternative solutions have been provided in Biology, Economics, Energy, Finance, Medicine, Political Sciences and so on. The most well-known approach in BNP is that of the Dirichlet process (DP). In this plenary talk I will deliver a brief primer on the DP. After that I will suggest a new and original focus on our interval dataset generated from a BNP approach based on DPs. An example of this methodology will be developed and pros and cons of this approach will be considered. As a consequence, an agenda for future research in the field of IA and SDA under a BNP framework will be outlined.
 
URI
http://hdl.handle.net/11531/14271
Bayesian nonparametrics for interval data. An agenda for future research
Palabras Clave


Collections
  • Documentos de Trabajo

Repositorio de la Universidad Pontificia Comillas copyright © 2015  Desarrollado con DSpace Software
Contact Us | Send Feedback
 

 

Búsqueda semántica (CKH Explorer)


Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_advisorxmlui.ArtifactBrowser.Navigation.browse_typeThis CollectionBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_advisorxmlui.ArtifactBrowser.Navigation.browse_type

My Account

LoginRegister

Repositorio de la Universidad Pontificia Comillas copyright © 2015  Desarrollado con DSpace Software
Contact Us | Send Feedback