• English
    • español
  • English 
    • English
    • español
  • Login
View Item 
  •   Home
  • 2.- Investigación
  • Documentos de Trabajo
  • View Item
  •   Home
  • 2.- Investigación
  • Documentos de Trabajo
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

EEM 2017 Forecast Competition: Wind power generation prediction using autoregressive models

Thumbnail
View/Open
IIT-17-078A.pdf (385.4Kb)
Author
Dimoulkas, Ilias
Mazidi, Peyman
Herre, Lars Finn
Estado
info:eu-repo/semantics/draft
Metadata
Show full item record
Mostrar METS del ítem
Ver registro en CKH

Refworks Export

Abstract
 
 
Energy forecasting provides essential contribution to integrate renewable energy sources into power systems. Today,renewable energy from wind power is one of the fastest growing means of power generation. As wind power forecast accuracy gains growing significance, the number of models used for forecasting is increasing as well. In this paper, we propose an autoregressive (AR) model that can be used as a benchmark model to validate and rank different forecasting models and their accuracy. The presented paper and research was developed within the scope of the European energy market (EEM) 2017 wind power forecasting competition.
 
URI
http://hdl.handle.net/11531/18256
EEM 2017 Forecast Competition: Wind power generation prediction using autoregressive models
Palabras Clave


Collections
  • Documentos de Trabajo

Repositorio de la Universidad Pontificia Comillas copyright © 2015  Desarrollado con DSpace Software
Contact Us | Send Feedback
 

 

Búsqueda semántica (CKH Explorer)


Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_advisorxmlui.ArtifactBrowser.Navigation.browse_typeThis CollectionBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_advisorxmlui.ArtifactBrowser.Navigation.browse_type

My Account

LoginRegister

Repositorio de la Universidad Pontificia Comillas copyright © 2015  Desarrollado con DSpace Software
Contact Us | Send Feedback