• English
    • español
  • English 
    • English
    • español
  • Login
View Item 
  •   Home
  • 2.- Investigación
  • Documentos de Trabajo
  • View Item
  •   Home
  • 2.- Investigación
  • Documentos de Trabajo
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Smart-DS: synthetic models for advanced, realistic testing: distribution systems and scenarios

Thumbnail
View/Open
IIT-17-197A_abstract.pdf (255.0Kb)
Author
Krishnan, Venkat
Palmintier, Bryan
Hodge, Bri-Mathias
Hale, Elaine T.
Elgindy, Tarek
Bugbee, Bruce
Rossol, Michael N.
Lopez, Anthony J.
Krishnamurthy, Dheepak
Vergara Ramírez, Claudio Ricardo
Mateo Domingo, Carlos
Postigo Marcos, Fernando Emilio
Cuadra García, Fernando
Gómez San Román, Tomás
Dueñas Martínez, Pablo
Estado
info:eu-repo/semantics/draft
Metadata
Show full item record
Mostrar METS del ítem
Ver registro en CKH

Refworks Export

Abstract
 
 
The National Renewable Energy Laboratory (NREL) in collaboration with Massachusetts Institute of Technology (MIT), Universidad Pontificia Comillas (Comillas-IIT, Spain) and GE Grid Solutions, is working on an ARPA-E GRID DATA project, titled Smart-DS, to create: 1) High-quality, realistic, synthetic distribution network models, and 2) Advanced tools for automated scenario generation based on high-resolution weather data and generation growth projections. Through these advancements, the Smart-DS project is envisioned to accelerate the development, testing, and adoption of advanced algorithms, approaches, and technologies for sustainable and resilient electric power systems, especially in the realm of U.S. distribution systems. This talk will present the goals and overall approach of the Smart-DS project, including the process of creating the synthetic distribution datasets using reference network model (RNM) and the comprehensive validation process to ensure network realism, feasibility, and applicability to advanced use cases. The talk will provide demonstrations of early versions of synthetic models, along with the lessons learnt from expert engagements to enhance future iterations. Finally, the scenario generation framework, its development plans, and co-ordination with GRID DATA repository teams to house these datasets for public access will also be discussed.
 
URI
http://hdl.handle.net/11531/27419
Smart-DS: synthetic models for advanced, realistic testing: distribution systems and scenarios
Palabras Clave

24 POWER TRANSMISSION AND DISTRIBUTION; synthetic distribution system datasets; standard scenarios; public data for distribution; grid data; reference network model
Collections
  • Documentos de Trabajo

Repositorio de la Universidad Pontificia Comillas copyright © 2015  Desarrollado con DSpace Software
Contact Us | Send Feedback
 

 

Búsqueda semántica (CKH Explorer)


Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_advisorxmlui.ArtifactBrowser.Navigation.browse_typeThis CollectionBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_advisorxmlui.ArtifactBrowser.Navigation.browse_type

My Account

LoginRegister

Repositorio de la Universidad Pontificia Comillas copyright © 2015  Desarrollado con DSpace Software
Contact Us | Send Feedback