• English
    • español
  • español 
    • English
    • español
  • Login
Ver ítem 
  •   DSpace Principal
  • 2.- Investigación
  • Documentos de Trabajo
  • Ver ítem
  •   DSpace Principal
  • 2.- Investigación
  • Documentos de Trabajo
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Method for condition characterization of industrial components by dynamic discovering of their pattern behaviour

Thumbnail
Ver/
IIT-20-049A.pdf (9.018Mb)
Autor
Calvo Báscones, Pablo
Sanz Bobi, Miguel Ángel
Álvarez Tejedor, Tomás
Estado
info:eu-repo/semantics/draft
Metadatos
Mostrar el registro completo del ítem
Mostrar METS del ítem
Ver registro en CKH

Refworks Export

Resumen
 
 
This paper presents a method to assess the behavior of an industrial component by a set of typical patterns which characterize the normal behavior of the component. Once such patterns are defined they can be used both for anomaly detection and diagnosis, and suggestion of maintenance re-scheduling. A main novelty introduced in the method presented is that the behavior pattern of an industrial component is defined progressively by multiple clusters discovered from characteristic feature values registered during the period of observation of the component. Each feature cluster is made up of two main elements: a centroid, which represents the most representative feature values within the same cluster (the pattern itself); and the probability density distributions (PDFs) of the feature values that belong to each pattern cluster (the domain of the pattern discovered). Clusters are obtained by unsupervised clustering algorithms such as Self-Organizing Maps (SOM) andor K-means. The method presented includes the definition of two new indicators for the behavior assessment based on the patterns discovered. The first indicator (similarity) is obtained through the location of each new observation within the PDF of the cluster to which it belongs. The second indicator (distance) is based on the Euclidean feature distance between observations and their nearest centroids. These two indicators are combined to obtain a single Health Index (HI) used to estimate the Remaining Useful Life (RUL) of the component. In addition, this paper includes a novel approach that has been experimented focused on the prognosis and forecasting of the RUL of the component once its behavior patterns are discovered. Such approach has been implemented using Recurrent Neural Networks (RNN). All these concepts are applied to a real example of industrial process including comments about the results obtained.
 
URI
http://hdl.handle.net/11531/56222
Method for condition characterization of industrial components by dynamic discovering of their pattern behaviour
Palabras Clave

anomaly detection, pattern discovering, normal behavior characterization, self-organizing maps, k-means,probability density functions, engine diagnosis
Colecciones
  • Documentos de Trabajo

Repositorio de la Universidad Pontificia Comillas copyright © 2015  Desarrollado con DSpace Software
Contacto | Sugerencias
 

 

Búsqueda semántica (CKH Explorer)


Listar

Todo DSpaceComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasPor DirectorPor tipoEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasPor DirectorPor tipo

Mi cuenta

AccederRegistro

Repositorio de la Universidad Pontificia Comillas copyright © 2015  Desarrollado con DSpace Software
Contacto | Sugerencias