• English
    • español
  • español 
    • English
    • español
  • Login
Ver ítem 
  •   DSpace Principal
  • 2.- Investigación
  • Documentos de Trabajo
  • Ver ítem
  •   DSpace Principal
  • 2.- Investigación
  • Documentos de Trabajo
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

A machine learning method applied to the evaluation of the condition in a fleet of similar vehicles

Thumbnail
Ver/
IIT-20-046A.pdf (756.8Kb)
Autor
Calvo Báscones, Pablo
Sanz Bobi, Miguel Ángel
Brighenti, Chiara
Ricatto, Mattia
Estado
info:eu-repo/semantics/draft
Metadatos
Mostrar el registro completo del ítem
Mostrar METS del ítem
Ver registro en CKH

Refworks Export

Resumen
 
 
This paper presents a procedure for anomaly detection of temperatures in different key components of the power train in a fleet of similar vehicles. The anomaly detection is based on the characterization of the typical temperatures observed in the fleet of vehicles under all the working conditions that they develop. These typical temperatures are obtained by clustering methods and they are used as reference for identification of those vehicles where some abnormal behaviors, that can be symptoms of possible performance degradations or failures, are observed. The procedure uses data collected in real-time from the vehicle and they are used as inputs of a Self-Organized Map (SOM) able to discover the typical temperatures expected in their operation. The patterns obtained by the SOM cluster the vehicles according to similar behaviors concerning the temperatures observed at the different key points monitored. This offers a quick and effective view about the performance of each vehicle system respect to their reference temperatures obtained. Vehicles with untypical behaviors regarding the rest of vehicle fleet could suggest the existence of latent failures or degradations. Observing how each vehicle behavior shifts through the different neurons of the SOM, a prognosis can be made about the possible evolution of an anomaly detected. The paper includes some examples of application of the procedure used for the evaluation of the condition of the vehicle fleet.
 
URI
http://hdl.handle.net/11531/56223
A machine learning method applied to the evaluation of the condition in a fleet of similar vehicles
Palabras Clave

behavior patterns, normal behavior characterization, self-organizing maps, k-means, neural networks.
Colecciones
  • Documentos de Trabajo

Repositorio de la Universidad Pontificia Comillas copyright © 2015  Desarrollado con DSpace Software
Contacto | Sugerencias
 

 

Búsqueda semántica (CKH Explorer)


Listar

Todo DSpaceComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasPor DirectorPor tipoEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasPor DirectorPor tipo

Mi cuenta

AccederRegistro

Repositorio de la Universidad Pontificia Comillas copyright © 2015  Desarrollado con DSpace Software
Contacto | Sugerencias