Mostrar el registro sencillo del ítem
A Machine Learning approach for the validation and optimization of permittivity mixing rules for binary liquids
dc.contributor.author | Monteagudo Honrubia, Miguel | es-ES |
dc.contributor.author | Herraiz Martínez, Francisco Javier | es-ES |
dc.contributor.author | Matanza Domingo, Javier | es-ES |
dc.date.accessioned | 2024-02-27T15:17:15Z | |
dc.date.available | 2024-02-27T15:17:15Z | |
dc.identifier.uri | http://hdl.handle.net/11531/87264 | |
dc.description.abstract | es-ES | |
dc.description.abstract | This paper presents the application of Support Vector Regressor models trained with glycerin-water mixture signals from a Dielectric Resonator sensor. Each signal is labeled with a concentration considered. The performance of these models indicates which mixing rule fits the most with experimental permittivity values. Some modifications of these formulas are validated to acquire better estimations. | en-GB |
dc.format.mimetype | application/pdf | es_ES |
dc.language.iso | en-GB | es_ES |
dc.rights | es_ES | |
dc.rights.uri | es_ES | |
dc.title | A Machine Learning approach for the validation and optimization of permittivity mixing rules for binary liquids | es_ES |
dc.type | info:eu-repo/semantics/workingPaper | es_ES |
dc.description.version | info:eu-repo/semantics/draft | es_ES |
dc.rights.accessRights | info:eu-repo/semantics/restrictedAccess | es_ES |
dc.keywords | es-ES | |
dc.keywords | en-GB |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Documentos de Trabajo
WorkingPaper, ponencias invitadas y contribuciones en congresos no publicadas