• English
    • español
  • español 
    • English
    • español
  • Login
Ver ítem 
  •   DSpace Principal
  • 2.- Investigación
  • Documentos de Trabajo
  • Ver ítem
  •   DSpace Principal
  • 2.- Investigación
  • Documentos de Trabajo
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Probability density-based energy-saving recommendations for household refrigerating appliances

Thumbnail
Ver/
Probability%20density-based%20energy-saving%20recommendations%20for%20household%20refrigerating%20appliances (2.399Mb)
Autor
Rodríguez Cuenca, Francisco
Sánchez Ubeda, Eugenio Francisco
Portela González, José
Muñoz San Roque, Antonio
Guizien Martin, Victor
Andrea, Veiga Santiago
Mateo González, Alicia
Estado
info:eu-repo/semantics/draft
Metadatos
Mostrar el registro completo del ítem
Mostrar METS del ítem
Ver registro en CKH

Refworks Export

Resumen
 
 
The power sector is a major contributor to anthropogenic global warming, responsible for 38 of total energy-related carbon dioxide emissions and 66 of carbon dioxide emission growth in 2018. In OECD member countries, the residential sector consumes a significant amount of electrical energy, with household refrigerating appliances alone accounting for 30-40 of the total consumption. To analyze the energy use of each domestic appliance, researchers have developed Appliance Level Energy Characterization (ALEC), a set of techniques that provide insights into individual energy consumption patterns. This study proposes a novel methodology that utilizes robust probability density estimation to detect refrigerators with high energy consumption and recommend tailored energy-saving measures. The methodology considers two consumption features: base energy consumption (energy usage without human interaction) and relative energy consumption (energy usage influenced by human interaction). To assess the approach’s effectiveness, the methodology was tested on a dataset of 30 different appliances from monitored homes, yielding positive results that support the robustness of the proposed method.
 
URI
http://hdl.handle.net/11531/87276
Probability density-based energy-saving recommendations for household refrigerating appliances
Palabras Clave

Household Refrigerating Appliances · Energy-Saving Recommendations · Appliance Level Energy Characterization
Colecciones
  • Documentos de Trabajo

Repositorio de la Universidad Pontificia Comillas copyright © 2015  Desarrollado con DSpace Software
Contacto | Sugerencias
 

 

Búsqueda semántica (CKH Explorer)


Listar

Todo DSpaceComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasPor DirectorPor tipoEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasPor DirectorPor tipo

Mi cuenta

AccederRegistro

Repositorio de la Universidad Pontificia Comillas copyright © 2015  Desarrollado con DSpace Software
Contacto | Sugerencias