Mostrar el registro sencillo del ítem
Automatic classification and permittivity estimation of organic solvents using a dielectric resonator sensor and machine learning techniques
dc.contributor.author | Monteagudo Honrubia, Miguel | es-ES |
dc.contributor.author | Herraiz Martínez, Francisco Javier | es-ES |
dc.contributor.author | Matanza Domingo, Javier | es-ES |
dc.date.accessioned | 2024-02-27T15:25:51Z | |
dc.date.available | 2024-02-27T15:25:51Z | |
dc.identifier.uri | http://hdl.handle.net/11531/87341 | |
dc.description.abstract | es-ES | |
dc.description.abstract | This paper presents the application of a dielectric resonator sensor to characterize organic solvents. Two different acquisition systems were implemented to test the sensor and compare the results between a Vector Network Analyzer (VNA) and a low-cost portable electronic reader presented in this paper. Five dissolutions and air were measured within a permittivity range from 1 to 80. Principal Component Analysis (PCA) and Support Vector Machine (SVM) were used to perform automatic classification achieving an accuracy close to the 100 for both systems. | en-GB |
dc.format.mimetype | application/pdf | es_ES |
dc.language.iso | en-GB | es_ES |
dc.rights | es_ES | |
dc.rights.uri | es_ES | |
dc.title | Automatic classification and permittivity estimation of organic solvents using a dielectric resonator sensor and machine learning techniques | es_ES |
dc.type | info:eu-repo/semantics/workingPaper | es_ES |
dc.description.version | info:eu-repo/semantics/draft | es_ES |
dc.rights.accessRights | info:eu-repo/semantics/restrictedAccess | es_ES |
dc.keywords | es-ES | |
dc.keywords | en-GB |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Documentos de Trabajo
WorkingPaper, ponencias invitadas y contribuciones en congresos no publicadas