Mostrar el registro sencillo del ítem

dc.contributor.authorPérez Bravo, Manueles-ES
dc.contributor.authorRomero Mora, José Carloses-ES
dc.contributor.authorRodríguez Matas, Antonio Franciscoes-ES
dc.contributor.authorLinares Llamas, Pedroes-ES
dc.date.accessioned2024-04-16T14:34:35Z
dc.date.available2024-04-16T14:34:35Z
dc.identifier.urihttp://hdl.handle.net/11531/88198
dc.description.abstractes-ES
dc.description.abstractTransport poverty, a multifaceted issue, has garnered increasing attention in recent years. This study employs anonymized mobile phone data and GIS techniques to analyze commuting patterns, economic burdens, and spatial distribution of transport poverty. By integrating data from various sources, including mobile phone records and income statistics, the study provides insights into the relationship between transport accessibility, income levels, and social inclusion. This methodology has been used to examine a case study in Madrid's economic area. The findings underscore the importance of accessibility indicators in understanding and addressing transport poverty. Through this bottom-up data processing approach, the study demonstrates the utility of big data analytics in informing evidence-based policy interventions to promote equitable access to transportation services.en-GB
dc.format.mimetypeapplication/pdfes_ES
dc.language.isoen-GBes_ES
dc.rightses_ES
dc.rights.uries_ES
dc.titleA big-data approach to assess transport poverty: A case study of Madrides_ES
dc.typeinfo:eu-repo/semantics/workingPaperes_ES
dc.description.versioninfo:eu-repo/semantics/draftes_ES
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccesses_ES
dc.keywordses-ES
dc.keywordsTransport poverty; Energy poverty; Big data; Indicators; Transport affordability; Transport accessibility.en-GB


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem