Mostrar el registro sencillo del ítem

dc.contributor.authorCastro Ponce, Marioes-ES
dc.date.accessioned2025-03-04T17:53:37Z
dc.date.available2025-03-04T17:53:37Z
dc.identifier.urihttp://hdl.handle.net/11531/97745
dc.description.abstractes-ES
dc.description.abstractMathematical is a valuable tool in Immunology, enabling us to understand complex mechanisms at different scales and make predictions about their behaviour. However, designing a model that accurately represents a system can be challenging. One important consideration is the level of detail required to make the model interpretable because, often, adding more levels of detail turns the model unidentifiable, i.e., it cannot be uniquely estimable from data. In this talk, we will explore the importance of identifiability in model analysis and design and discuss strategies for finding the optimal level of model detail. We will examine several case studies highlighting challenges and opportunities in balancing model complexity with identifiability and point to some examples where simplicity trumps excessive focus on details.  en-GB
dc.format.mimetypeapplication/pdfes_ES
dc.language.isoen-GBes_ES
dc.rightses_ES
dc.rights.uries_ES
dc.titleIdentifiability matters: a closer look at the art of simple mathematical models for complex systemses_ES
dc.typeinfo:eu-repo/semantics/workingPaperes_ES
dc.description.versioninfo:eu-repo/semantics/draftes_ES
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccesses_ES
dc.keywordses-ES
dc.keywordsVirus dynamics; Statistical Physics; Mathematical modelsen-GB


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem