Mostrar el registro sencillo del ítem

dc.contributor.authorKondo, Kotaes-ES
dc.contributor.authorTewari, Claudius T.es-ES
dc.contributor.authorTagliabue, Andreaes-ES
dc.contributor.authorTordesillas Torres, Jesúses-ES
dc.contributor.authorLusk, Parker C.es-ES
dc.contributor.authorPeterson, Mason B.es-ES
dc.contributor.authorHow, Jonathan P.es-ES
dc.date.accessioned2025-03-14T12:09:53Z
dc.date.available2025-03-14T12:09:53Z
dc.identifier.urihttp://hdl.handle.net/11531/98071
dc.description.abstract.es-ES
dc.description.abstractIn decentralized multiagent trajectory planners, agents need to communicate and exchange their positions to generate collision-free trajectories. However, due to localization errors/uncertainties, trajectory deconfliction can fail even if trajectories are perfectly shared between agents. To address this issue, we first present PARM and PARM*, perception-aware, decentralized, asynchronous multiagent trajectory planners that enable a team of agents to navigate uncertain environments while deconflicting trajectories and avoiding obstacles using perception information. PARM* differs from PARM as it is less conservative, using more computation to find closer-tooptimal solutions. While these methods achieve state-of-the-art performance, they suffer from high computational costs as they need to solve large optimization problems onboard, making it difficult for agents to replan at high rates. To overcome this challenge, we present our second key contribution, PRIMER, a learning-based planner trained with imitation learning (IL) using PARM* as the expert demonstrator. PRIMER leverages the low computational requirements at deployment of neural networks and achieves a computation speed up to 5614 times faster than optimization-based approaches.en-GB
dc.format.mimetypeapplication/pdfes_ES
dc.language.isoen-GBes_ES
dc.rightsCreative Commons Reconocimiento-NoComercial-SinObraDerivada Españaes_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/es_ES
dc.titlePRIMER: Perception-Aware Robust Learning-based Multiagent Trajectory Planneres_ES
dc.typeinfo:eu-repo/semantics/workingPaperes_ES
dc.description.versioninfo:eu-repo/semantics/draftes_ES
dc.rights.holderes_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.keywords.es-ES
dc.keywordsDecentralized planning Trajectory deconfliction Localization uncertainty Imitation learning Neural networksen-GB


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Creative Commons Reconocimiento-NoComercial-SinObraDerivada España
Excepto si se señala otra cosa, la licencia del ítem se describe como Creative Commons Reconocimiento-NoComercial-SinObraDerivada España