Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/101277
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorParedes Miguel, José Rodrigoes-ES
dc.date.accessioned2025-07-16T12:23:03Z-
dc.date.available2025-07-16T12:23:03Z-
dc.date.issued2025-06-01es_ES
dc.identifier.issn2699-9293es_ES
dc.identifier.urihttps:doi.org10.1002adpr.202400113es_ES
dc.identifier.urihttp://hdl.handle.net/11531/101277-
dc.descriptionArtículos en revistases_ES
dc.description.abstractes-ES
dc.description.abstractUltrafast pulsed laser technology presents unique challenges and opportunities in material processing and characterization for precision photonics. Herein, an experiment is conducted involving the use of an ultrafast pulsed laser to irradiate a molybdenum film, inducing oxide formation. A total of 54 experiments are performed, varying the laser irradiation time and per-pulse laser fluence, resulting in a database with diverse oxide formations on the material. This dataset is further expanded numerically through interpolation to 187 samples. Subsequently, eight different deep neural network models, each with varying hidden layers and numbers of neurons, are employed to characterize the laser behavior with different parameters. These models are then validated numerically using three different learning rates, and the results are statistically evaluated using three metrics: mean squared error, mean absolute error, and R2 score.en-GB
dc.language.isoen-GBes_ES
dc.sourceRevista: Advanced Photonics Research, Periodo: 1, Volumen: online, Número: 6, Página inicial: 2400113-1, Página final: 2400113-13es_ES
dc.subject.otherInstituto de Investigación Tecnológica (IIT)es_ES
dc.titleExploring the Role of Artificial Intelligence in Precision Photonics: A Case Study on Deep Neural Network-Based fs Laser Pulsed Parameter Estimation for MoOx Formationes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.description.versioninfo:eu-repo/semantics/publishedVersiones_ES
dc.rights.holderes_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.keywordses-ES
dc.keywordsdeep neural networks, material characterization, molybdenum thin films, oxide formation, ultrafast pulsed lasersen-GB
Aparece en las colecciones: Artículos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
IIT-25-105R3,99 MBUnknownVisualizar/Abrir
IIT-25-105R_preview3,38 kBUnknownVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.