Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/101277
Título : Exploring the Role of Artificial Intelligence in Precision Photonics: A Case Study on Deep Neural Network-Based fs Laser Pulsed Parameter Estimation for MoOx Formation
Autor : Paredes Miguel, José Rodrigo
Fecha de publicación : 1-jun-2025
Resumen : 
Ultrafast pulsed laser technology presents unique challenges and opportunities in material processing and characterization for precision photonics. Herein, an experiment is conducted involving the use of an ultrafast pulsed laser to irradiate a molybdenum film, inducing oxide formation. A total of 54 experiments are performed, varying the laser irradiation time and per-pulse laser fluence, resulting in a database with diverse oxide formations on the material. This dataset is further expanded numerically through interpolation to 187 samples. Subsequently, eight different deep neural network models, each with varying hidden layers and numbers of neurons, are employed to characterize the laser behavior with different parameters. These models are then validated numerically using three different learning rates, and the results are statistically evaluated using three metrics: mean squared error, mean absolute error, and R2 score.
Descripción : Artículos en revistas
URI : https:doi.org10.1002adpr.202400113
http://hdl.handle.net/11531/101277
ISSN : 2699-9293
Aparece en las colecciones: Artículos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
IIT-25-105R3,99 MBUnknownVisualizar/Abrir
IIT-25-105R_preview3,38 kBUnknownVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.