Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/101281
Título : Ensemble-Based Biometric Verification: Defending Against Multi-Strategy Deepfake Image Generation
Autor : Palacios Hielscher, Rafael
Gupta, Amar
Fecha de publicación : 1-jun-2025
Resumen : 
Deepfake images, synthetic images created using digital software, continue to present a serious threat to online platforms. This is especially relevant for biometric verification systems, as deepfakes that attempt to bypass such measures increase the risk of impersonation, identity theft and scams. Although research on deepfake image detection has provided many high-performing classifiers, many of these commonly used detection models lack generalizability across different methods of deepfake generation. For companies and governments fighting identify fraud, a lack of generalization is challenging, as malicious actors may use a variety of deepfake image-generation methods available through online wrappers. This work explores if combining multiple classifiers into an ensemble model can improve generalization without losing performance across different generation methods. It also considers current methods of deepfake image generation, with a focus on publicly available and easily accessible methods. We compare our framework against its underlying models to show how companies can better respond to emerging deepfake generation methods.
Descripción : Artículos en revistas
URI : https:doi.org10.3390computers14060225
http://hdl.handle.net/11531/101281
ISSN : 2073-431X
Aparece en las colecciones: Artículos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
IIT-25-177R1,18 MBUnknownVisualizar/Abrir
IIT-25-177R_preview3,03 kBUnknownVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.