Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/96200
Título : A novel neuro-probabilistic framework for energy demand forecasting in Electric Vehicle integration
Autor : Rojo Yepes, Miguel Ángel
Galici, Marco
Saldarriaga Zuluaga, Sergio Danilo
López-Lezama, Jesús M.
Muñoz Galeano, Nicolás
Fecha de publicación : 1-nov-2024
Resumen : 
This paper presents a novel grid-to-vehicle modeling framework that leverages probabilistic methods and neural networks to accurately forecast electric vehicle (EV) charging demand and overall energy consumption. The proposed methodology, tailored to the specific context of Medellin, Colombia, provides valuable insights for optimizing charging infrastructure and grid operations. Based on collected local data, mathematical models are developed and coded to accurately reflect the characteristics of EV charging. Through a rigorous analysis of criteria, indices, and mathematical relationships, the most suitable model for the city is selected. By combining probabilistic modeling with neural networks, this study offers a comprehensive approach to predicting future energy demand as EV penetration increases. The EV charging model effectively captures the charging behavior of various EV types, while the neural network accurately forecasts energy demand. The findings can inform decision-making regarding charging infrastructure planning, investment strategies, and policy development to support the sustainable integration of electric vehicles into the power grid.
Descripción : Artículos en revistas
URI : https:doi.org10.3390wevj15110493
http://hdl.handle.net/11531/96200
ISSN : 2032-6653
Aparece en las colecciones: Artículos

Ficheros en este ítem:
Fichero Tamaño Formato  
IIT-24-309R919,36 kBUnknownVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.