Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/11531/96233
Título : A review of asset management using artificial intelligence-based machine learning models: applications for the electric power and energy system
Autor : Rajora, GopaL Lal
Sanz Bobi, Miguel Ángel
Bertling Tjemberg, Lina
Urrea Cabus, José Eduardo
Fecha de publicación : 1-jun-2024
Resumen : 
Power system protection and asset management present persistent technical challenges, particularly in the context of the smart grid and renewable energy sectors. This paper aims to address these challenges by providing a comprehensive assessment of machine learning applications for effective asset management in power systems. The study focuses on the increasing demand for energy production while maintaining environmental sustainability and efficiency. By harnessing the power of modern technologies such as artificial intelligence (AI), machine learning (ML), and deep learning (DL), this research explores how ML techniques can be leveraged as powerful tools for the power industry. By showcasing practical applications and success stories, this paper demonstrates the growing acceptance of machine learning as a significant technology for current and future business needs in the power sector. Additionally, the study examines the barriers and difficulties of large-scale ML deployment in practical settings while exploring potential opportunities for these tactics. Through this overview, insights into the transformative potential of ML in shaping the future of power system asset management are provided.
Descripción : Artículos en revistas
URI : https:doi.org10.1049gtd2.13183
http://hdl.handle.net/11531/96233
ISSN : 1751-8687
Aparece en las colecciones: Artículos

Ficheros en este ítem:
Fichero Tamaño Formato  
IIT-24-158R1,36 MBUnknownVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.