• English
    • español
  • español 
    • English
    • español
  • Login
Ver ítem 
  •   DSpace Principal
  • 2.- Investigación
  • Documentos de Trabajo
  • Ver ítem
  •   DSpace Principal
  • 2.- Investigación
  • Documentos de Trabajo
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Modeling Membrane Degradation in PEM Electrolyzers with Physics-Informed Neural Networks

Thumbnail
Ver/
IIT-25-220WP.pdf (751.1Kb)
Autor
Polo Molina, Alejandro
Portela González, José
Herrero Rozas, Luis Alberto
Estado
info:eu-repo/semantics/draft
Metadatos
Mostrar el registro completo del ítem
Mostrar METS del ítem
Ver registro en CKH

Refworks Export

Resumen
 
 
This study introduces the first application of Physics-Informed Neural Networks (PINNs) to model membrane degradation in proton exchange membrane (PEM) electrolyzers, which are essential for sustainable hydrogen production. Traditional physics-based models offer physical interpretability but rely on numerous parameters that are difficult to measure, while data-driven models like machine learning provide flexibility but often lack generalizability and consistency with physical laws. The proposed PINN framework bridges this gap by integrating two ordinary differential equations: one describing membrane thinning through a first-order degradation law, and another modeling the time evolution of cell voltage due to degradation. The results show that the PINN effectively captures long-term degradation dynamics using limited and noisy data, while preserving physical meaning. This hybrid modeling approach provides a robust and accurate tool for understanding and predicting membrane degradation in PEM electrolyzers. It offers a promising foundation for improved diagnostics and performance optimization in electrochemical systems subjected to aging and reliability challenges.
 
URI
http://hdl.handle.net/11531/104889
Modeling Membrane Degradation in PEM Electrolyzers with Physics-Informed Neural Networks
Palabras Clave

Physics-Informed Neural Networks, PEM Electrolyzers, PEM Modelling, Membrane Degradation Modelling, Machine Learning
Colecciones
  • Documentos de Trabajo

Repositorio de la Universidad Pontificia Comillas copyright © 2015  Desarrollado con DSpace Software
Contacto | Sugerencias
 

 

Búsqueda semántica (CKH Explorer)


Listar

Todo DSpaceComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasPor DirectorPor tipoEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasPor DirectorPor tipo

Mi cuenta

AccederRegistro

Repositorio de la Universidad Pontificia Comillas copyright © 2015  Desarrollado con DSpace Software
Contacto | Sugerencias