Mostrar el registro sencillo del ítem
Modeling Membrane Degradation in PEM Electrolyzers with Physics-Informed Neural Networks
dc.contributor.author | Polo Molina, Alejandro | es-ES |
dc.contributor.author | Portela González, José | es-ES |
dc.contributor.author | Herrero Rozas, Luis Alberto | es-ES |
dc.date.accessioned | 2025-09-26T16:37:56Z | |
dc.date.available | 2025-09-26T16:37:56Z | |
dc.identifier.uri | http://hdl.handle.net/11531/104889 | |
dc.description.abstract | es-ES | |
dc.description.abstract | This study introduces the first application of Physics-Informed Neural Networks (PINNs) to model membrane degradation in proton exchange membrane (PEM) electrolyzers, which are essential for sustainable hydrogen production. Traditional physics-based models offer physical interpretability but rely on numerous parameters that are difficult to measure, while data-driven models like machine learning provide flexibility but often lack generalizability and consistency with physical laws. The proposed PINN framework bridges this gap by integrating two ordinary differential equations: one describing membrane thinning through a first-order degradation law, and another modeling the time evolution of cell voltage due to degradation. The results show that the PINN effectively captures long-term degradation dynamics using limited and noisy data, while preserving physical meaning. This hybrid modeling approach provides a robust and accurate tool for understanding and predicting membrane degradation in PEM electrolyzers. It offers a promising foundation for improved diagnostics and performance optimization in electrochemical systems subjected to aging and reliability challenges. | en-GB |
dc.format.mimetype | application/pdf | es_ES |
dc.language.iso | en-GB | es_ES |
dc.rights | es_ES | |
dc.rights.uri | es_ES | |
dc.title | Modeling Membrane Degradation in PEM Electrolyzers with Physics-Informed Neural Networks | es_ES |
dc.type | info:eu-repo/semantics/workingPaper | es_ES |
dc.description.version | info:eu-repo/semantics/draft | es_ES |
dc.rights.accessRights | info:eu-repo/semantics/restrictedAccess | es_ES |
dc.keywords | es-ES | |
dc.keywords | Physics-Informed Neural Networks, PEM Electrolyzers, PEM Modelling, Membrane Degradation Modelling, Machine Learning | en-GB |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Documentos de Trabajo
WorkingPaper, ponencias invitadas y contribuciones en congresos no publicadas