Mostrar el registro sencillo del ítem

dc.contributor.authorPolo Molina, Alejandroes-ES
dc.contributor.authorPortela González, Josées-ES
dc.contributor.authorHerrero Rozas, Luis Albertoes-ES
dc.date.accessioned2025-09-26T16:37:56Z
dc.date.available2025-09-26T16:37:56Z
dc.identifier.urihttp://hdl.handle.net/11531/104889
dc.description.abstractes-ES
dc.description.abstractThis study introduces the first application of Physics-Informed Neural Networks (PINNs) to model membrane degradation in proton exchange membrane (PEM) electrolyzers, which are essential for sustainable hydrogen production. Traditional physics-based models offer physical interpretability but rely on numerous parameters that are difficult to measure, while data-driven models like machine learning provide flexibility but often lack generalizability and consistency with physical laws. The proposed PINN framework bridges this gap by integrating two ordinary differential equations: one describing membrane thinning through a first-order degradation law, and another modeling the time evolution of cell voltage due to degradation. The results show that the PINN effectively captures long-term degradation dynamics using limited and noisy data, while preserving physical meaning. This hybrid modeling approach provides a robust and accurate tool for understanding and predicting membrane degradation in PEM electrolyzers. It offers a promising foundation for improved diagnostics and performance optimization in electrochemical systems subjected to aging and reliability challenges.en-GB
dc.format.mimetypeapplication/pdfes_ES
dc.language.isoen-GBes_ES
dc.rightses_ES
dc.rights.uries_ES
dc.titleModeling Membrane Degradation in PEM Electrolyzers with Physics-Informed Neural Networkses_ES
dc.typeinfo:eu-repo/semantics/workingPaperes_ES
dc.description.versioninfo:eu-repo/semantics/draftes_ES
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccesses_ES
dc.keywordses-ES
dc.keywordsPhysics-Informed Neural Networks, PEM Electrolyzers, PEM Modelling, Membrane Degradation Modelling, Machine Learningen-GB


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem